Automorphism groups of some geometric structures

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

AUTOMORPHISM GROUPS OF SOME NON-TRANSITIVE GRAPHS

An Euclidean graph associated with a molecule is defined by a weighted graph with adjacency matrix M = [dij], where for ij, dij is the Euclidean distance between the nuclei i and j. In this matrix dii can be taken as zero if all the nuclei are equivalent. Otherwise, one may introduce different weights for distinct nuclei. Balaban introduced some monster graphs and then Randic computed complexit...

متن کامل

Geometric automorphism groups of graphs

Constructing symmetric drawings of graphs is NP-hard. In this paper, we present a new method for drawing graphs symmetrically based on group theory. More formally, we define an n-geometric automorphism group as a subgroup of the automorphism group of a graph that can be displayed as symmetries of a drawing of the graph in n dimensions. Then we present an algorithm to find all 2and 3-geometric a...

متن کامل

Automorphism groups of countable structures

Suppose M is a countable first-order structure with a ‘rich’ automorphism group Aut(M). We will study Aut(M) both as a group and as a topological group, where the topology is that of pointwise convergence. This involves a mixture of model theory, group theory, combinatorics, descriptive set theory and topological dynamics. Here, ‘rich’ is undefined and depends on the context, but examples which...

متن کامل

Simplicity of some automorphism groups

a r t i c l e i n f o a b s t r a c t Let M be a countably infinite first order relational structure which is homogeneous in the sense of Fraïssé. We show, under the assumption that the class of finite substructures of M has the free amalgamation property, along with the assumption that Aut(M) is transitive on M but not equal to Sym(M), that Aut(M) is a simple group. This generalises results of...

متن کامل

Algebraic Reflexivity of Isometry Groups and Automorphism Groups of Some Operator Structures

We establish the algebraic reflexivity of three isometry groups of operator structures: The group of all surjective isometries on the unitary group, the group of all surjective isometries on the set of all positive invertible operators equipped with the Thompson metric, and the group of all surjective isometries on the general linear group of B(H), the operator algebra over a complex infinite d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Geometry

سال: 1980

ISSN: 0022-040X

DOI: 10.4310/jdg/1214435649